References
Alsan, Marcella, and Marianne Wanamaker. 2017. “Tuskegee and the
Health of Black Men*.” The Quarterly Journal of
Economics 133 (1): 407–55. https://doi.org/10.1093/qje/qjx029.
Arama, Charles, Jeff Skinner, Didier Doumtabe, Silvia Portugal, Tuan M.
Tran, Aarti Jain, Boubacar Traore, et al. 2015. “Genetic
Resistance to Malaria Is Associated With Greater Enhancement of
Immunoglobulin (Ig)M Than IgG Responses to a Broad Array of Plasmodium
falciparum Antigens.” Open Forum Infectious Diseases 2
(3): ofv118. https://doi.org/10.1093/ofid/ofv118.
Aronow, Peter M., and Cyrus Samii. 2015. “Does Regression Produce
Representative Estimates of Causal Effects?” American Journal
of Political Science 60 (1): 250–67. https://doi.org/10.1111/ajps.12185.
Banack, Hailey R, Elizabeth Rose Mayeda, Ashley I Naimi, Matthew P Fox,
and Brian W Whitcomb. 2023. “Collider Stratification Bias I:
Principles and Structure.” American Journal of
Epidemiology, October. https://doi.org/10.1093/aje/kwad203.
Brookhart, M. Alan, Sebastian Schneeweiss, Kenneth J. Rothman, Robert J.
Glynn, Jerry Avorn, and Til Stürmer. 2006. “Variable Selection for
Propensity Score Models.” American Journal of
Epidemiology 163 (12): 1149–56. https://doi.org/10.1093/aje/kwj149.
Chattopadhyay, Ambarish, and José R Zubizarreta. 2022. “On the
Implied Weights of Linear Regression for Causal Inference.”
Biometrika 110 (3): 615–29. https://doi.org/10.1093/biomet/asac058.
Cohen, Jessica, and Pascaline Dupas. 2010. “Free Distribution or
Cost-Sharing? Evidence from a Randomized Malaria Prevention
Experiment*.” The Quarterly Journal of Economics 125
(1): 1–45. https://doi.org/10.1162/qjec.2010.125.1.1.
Cowger, Tori L., Eleanor J. Murray, Jaylen Clarke, Mary T. Bassett,
Bisola O. Ojikutu, Sarimer M. Sánchez, Natalia Linos, and Kathryn T.
Hall. 2022. “Lifting Universal Masking in Schools
Covid-19 Incidence Among Students and Staff.” New England
Journal of Medicine 387 (21): 1935–46. https://doi.org/10.1056/nejmoa2211029.
D’Agostino McGowan, Lucy. 2018. “Improving Modern Techniques of
Causal Inference: Finite Sample Performance of ATM and ATO Doubly Robust
Estimators, Variance Estimation for ATO Estimators, and Contextualized
Tipping Point Sensitivity Analyses for Unmeasured Confounding.”
PhD thesis.
———. 2022. “Sensitivity Analyses for Unmeasured
Confounders.” Current Epidemiology Reports 9 (4):
361–75.
D’Agostino McGowan, Lucy, Travis Gerke, and Malcolm Barrett. 2023.
“Causal Inference Is Not Just a Statistics Problem.”
Journal of Statistics and Data Science Education, December,
1–6. https://doi.org/10.1080/26939169.2023.2276446.
Didelez, Vanessa, and Mats Julius Stensrud. 2021. “On the Logic of
Collapsibility for Causal Effect Measures.” Biometrical
Journal 64 (2): 235–42. https://doi.org/10.1002/bimj.202000305.
Ding, Peng, and Luke W. Miratrix. 2015. “To Adjust or Not to
Adjust? Sensitivity Analysis of m-Bias and Butterfly-Bias.”
Journal of Causal Inference 3 (1): 41–57. https://doi.org/doi:10.1515/jci-2013-0021.
Efron, Bradley. 1979. “Bootstrap Methods: Another Look at the
Jackknife.” The Annals of Statistics 7 (1). https://doi.org/10.1214/aos/1176344552.
Efron, Bradley, and Robert J. Tibshirani. 1993. An Introduction to
the Bootstrap. Monographs on Statistics and Applied Probability 57.
Boca Raton, Florida, USA: Chapman & Hall/CRC.
Fox, Matthew P, Eleanor J Murray, Catherine R Lesko, and Shawnita
Sealy-Jefferson. 2022. “On the Need to Revitalize Descriptive
Epidemiology.” American Journal of Epidemiology 191 (7):
1174–79. https://doi.org/10.1093/aje/kwac056.
Gartner, Danielle R., Paul L. Delamater, Robert A. Hummer, Jennifer L.
Lund, Brian W. Pence, and Whitney R. Robinson. 2020. “Integrating
Surveillance Data to Estimate Race/Ethnicity-Specific Hysterectomy
Inequalities Among Reproductive-Aged Women.”
Epidemiology 31 (3): 385–92. https://doi.org/10.1097/ede.0000000000001171.
Gelman, Andrew. 2017. “What Is ‘Overfitting,’
Exactly?” Statistical Modeling, Causal Inference, and Social
Science. https://statmodeling.stat.columbia.edu/2017/07/15/what-is-overfitting-exactly/.
Gettleman, Jeffrey. 2015. “Meant to Keep Malaria Out, Mosquito
Nets Are Used to Haul Fish In.” The New York Times,
January. https://www.nytimes.com/2015/01/25/world/africa/mosquito-nets-for-malaria-spawn-new-epidemic-overfishing.html.
Godtfredsen, Nina S, Eva Prescott, and Merete Osler. 2005. “Effect
of Smoking Reduction on Lung Cancer Risk.” Jama 294
(12): 1505–10.
Greenland, Sander. 2021a. “Noncollapsibility, Confounding, and
Sparse-Data Bias. Part 1: The Oddities of Odds.” Journal of
Clinical Epidemiology 138 (October): 178–81. https://doi.org/10.1016/j.jclinepi.2021.06.007.
———. 2021b. “Noncollapsibility, Confounding, and Sparse-Data Bias.
Part 2: What Should Researchers Make of Persistent Controversies about
the Odds Ratio?” Journal of Clinical Epidemiology 139
(November): 264–68. https://doi.org/10.1016/j.jclinepi.2021.06.004.
Greifer, Noah, and Elizabeth A Stuart. 2021. “Choosing the
Estimand When Matching or Weighting in Observational Studies.”
arXiv Preprint arXiv:2106.10577.
Gupta, Rishi K, Ewen M Harrison, Antonia Ho, Annemarie B Docherty,
Stephen R Knight, Maarten van Smeden, Ibrahim Abubakar, et al. 2021.
“Development and Validation of the ISARIC 4C Deterioration Model
for Adults Hospitalised with COVID-19: A Prospective Cohort
Study.” The Lancet Respiratory Medicine 9 (4): 349–59.
https://doi.org/10.1016/s2213-2600(20)30559-2.
Haber, N. A., S. E. Wieten, J. M. Rohrer, O. A. Arah, P. W. G. Tennant,
E. A. Stuart, E. J. Murray, et al. 2022. “Causal and Associational
Language in Observational Health
Research: A Systematic
Evaluation.” Am J Epidemiol 191
(12): 2084–97.
Harrell, Frank E. 2001. Multivariable Modeling Strategies.
Springer New York. https://doi.org/10.1007/978-1-4757-3462-1_4.
Hawley, William A., Penelope A. Phillips-Howard, Feiko O. ter Kuile,
Dianne J. Terlouw, John M. Vulule, Maurice Ombok, Bernard L. Nahlen, et
al. 2003. “Community-wide effects of permethrin-treated bed nets
on child mortality and malaria morbidity in western Kenya.”
The American Journal of Tropical Medicine and Hygiene 68 (4
Suppl): 121–27.
Hernan, M. A., and S. R. Cole. 2009. “Invited Commentary: Causal
Diagrams and Measurement Bias.” American Journal of
Epidemiology 170 (8): 959–62. https://doi.org/10.1093/aje/kwp293.
Hernán, M. A., and J. M. Robins. 2021. Causal Inference: What
If? Boca Raton: Chapman Hall/CRC.
Hernán, Miguel A. 2018. “The C-Word: Scientific Euphemisms Do Not
Improve Causal Inference From Observational Data.” American
Journal of Public Health 108 (5): 616–19. https://doi.org/10.2105/ajph.2018.304337.
Hernán, Miguel A., John Hsu, and Brian Healy. 2019. “A Second
Chance to Get Causal Inference Right: A Classification of Data Science
Tasks.” CHANCE 32 (1): 42–49. https://doi.org/10.1080/09332480.2019.1579578.
Hernán, Miguel A, and James M Robins. 2016. “Using Big Data to
Emulate a Target Trial When a Randomized Trial Is Not Available.”
American Journal of Epidemiology 183 (8): 758–64.
Herodotus. n.d. “The History of Herodotus.” https://www.gutenberg.org/files/2707/2707-h/2707-h.htm.
Hesterberg, Tim C. 2015. “What Teachers Should Know About the
Bootstrap: Resampling in the Undergraduate Statistics
Curriculum.” The American Statistician 69 (4): 371–86.
https://doi.org/10.1080/00031305.2015.1089789.
Howard, S. C., J. Omumbo, C. Nevill, E. S. Some, C. A. Donnelly, and R.
W. Snow. 2000. “Evidence for a mass community effect of
insecticide-treated bednets on the incidence of malaria on the Kenyan
coast.” Transactions of the Royal Society of Tropical
Medicine and Hygiene 94 (4): 357–60. https://doi.org/10.1016/s0035-9203(00)90103-2.
Huitfeldt, Anders, Mats J. Stensrud, and Etsuji Suzuki. 2019. “On
the Collapsibility of Measures of Effect in the Counterfactual Causal
Framework.” Emerging Themes in Epidemiology 16 (1). https://doi.org/10.1186/s12982-018-0083-9.
Imbens, Guido W, and Donald B Rubin. 2015. Causal Inference in
Statistics, Social, and Biomedical Sciences. Cambridge University
Press.
James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani.
2022. An Introduction to Statistical Learning: With Applications in
r. Springer.
Keil, A. P., J. K. Edwards, D. B. Richardson, A. I. Naimi, and S. R.
Cole. 2014. “The parametric
g-formula for time-to-event data: intuition and a worked
example.” Epidemiology 25 (6): 889–97.
Kuhn, Max, and Kjell Johnson. 2013. Applied Predictive
Modeling. Springer New York. https://doi.org/10.1007/978-1-4614-6849-3.
Kuhn, Max, and Julia Silge. 2022. Tidy Modeling with r: A Framework
for Modeling in the Tidyverse. O’Reilly.
Lengeler, C. 2004. “Insecticide-treated bed nets and curtains for
preventing malaria.” The Cochrane Database of Systematic
Reviews, no. 2: CD000363. https://doi.org/10.1002/14651858.CD000363.pub2.
Lipsitch, Marc, Eric Tchetgen Tchetgen, and Ted Cohen. 2010.
“Negative Controls.” Epidemiology 21 (3): 383–88.
https://doi.org/10.1097/ede.0b013e3181d61eeb.
Lu, Haidong, Stephen R. Cole, Chanelle J. Howe, and Daniel Westreich.
2022. “Toward a Clearer Definition of Selection Bias When
Estimating Causal Effects.” Epidemiology 33 (5):
699–706. https://doi.org/10.1097/ede.0000000000001516.
Lucy, D, and Agostino McGowan. 2022. “Tipr: An r Package for
Sensitivity Analyses for Unmeasured Confounders.” Journal of
Open Source Software 7 (77): 4495.
Lumley, Thomas. 2017. “When the Bootstrap Doesn’t Work.”
Biased and Inefficient. https://notstatschat.rbind.io/2017/02/01/when-the-bootstrap-doesnt-work/.
Mansournia, Mohammad A, Miguel A Hernán, and Sander Greenland. 2013.
“Matched Designs and Causal Diagrams.” International
Journal of Epidemiology 42 (3): 860–69. https://doi.org/10.1093/ije/dyt083.
Miao, Wang, Zhi Geng, and Eric J Tchetgen Tchetgen. 2018.
“Identifying Causal Effects with Proxy Variables of an Unmeasured
Confounder.” Biometrika 105 (4): 987–93. https://doi.org/10.1093/biomet/asy038.
Miller, William C. 2004. “Prevalence of Chlamydial and Gonococcal
Infections Among Young Adults in the United States.”
JAMA 291 (18): 2229. https://doi.org/10.1001/jama.291.18.2229.
Moreno-Betancur, Margarita, Katherine J Lee, Finbarr P Leacy, Ian R
White, Julie A Simpson, and John B Carlin. 2018. “Canonical Causal
Diagrams to Guide the Treatment of Missing Data in Epidemiologic
Studies.” American Journal of Epidemiology 187 (12):
2705–15. https://doi.org/10.1093/aje/kwy173.
“Mosquito Net Use in Early Childhood and Survival to Adulthood in
Tanzania | NEJM.” n.d. https://www.nejm.org/doi/full/10.1056/NEJMoa2112524.
Murray, Eleanor J., and Zach Kunicki. 2022. “As the Wheel Turns:
Causal Inference for Feedback Loops and Bidirectional Effects.”
http://dx.doi.org/10.31219/osf.io/9em5q.
Myers, Jessica A., Jeremy A. Rassen, Joshua J. Gagne, Krista F.
Huybrechts, Sebastian Schneeweiss, Kenneth J. Rothman, Marshall M.
Joffe, and Robert J. Glynn. 2011. “Effects of Adjusting for
Instrumental Variables on Bias and Precision of Effect
Estimates.” American Journal of Epidemiology 174 (11):
1213–22. https://doi.org/10.1093/aje/kwr364.
Nevill, C. G., E. S. Some, V. O. Mung’ala, W. Mutemi, L. New, K. Marsh,
C. Lengeler, and R. W. Snow. 1996. “Insecticide-treated bednets
reduce mortality and severe morbidity from malaria among children on the
Kenyan coast.” Tropical medicine & international health:
TM & IH 1 (2): 139–46. https://doi.org/10.1111/j.1365-3156.1996.tb00019.x.
Nilsson, Anton, Carl Bonander, Ulf Strömberg, and Jonas Björk. 2020.
“A Directed Acyclic Graph for Interactions.”
International Journal of Epidemiology 50 (2): 613–19. https://doi.org/10.1093/ije/dyaa211.
Pearl, J., and D. Mackenzie. 2018. The Book of Why: The New Science
of Cause and Effect. Penguin Books Limited.
Pearl, Judea, Madelyn Glymour, and Nicholas P. Jewell. 2021. Causal
Inference in Statistics: A Primer. Wiley.
Pryce, Joseph, Marty Richardson, and Christian Lengeler. 2018.
“Insecticide-Treated Nets for Preventing
Malaria.” Cochrane Database of Systematic Reviews, no.
11. https://doi.org/10.1002/14651858.CD000363.pub3.
Riederer, Emily. 2020. “Column Names as Contracts.”
Emily Riederer. Emily Riederer. https://emilyriederer.netlify.app/post/column-name-contracts/.
Ritchie, Hannah, and Max Roser. 2021. “Forests and
Deforestation.” Our World in Data.
Robins, J. M., and L. Wasserman. 1999. On the Impossibility of
Inferring Causation from Association Without Background Knowledge.
Edited by P. Glymour and G. Cooper. Menlo Park, CA, Cambridge, MA: AAAI
Press, The MIT Press.
Robins, James M., and Larry Wasserman. 1999. “On the Impossibility
of Inferring Causation from Association Without Background
Knowledge.” In. The MIT Press. https://doi.org/10.7551/mitpress/2006.003.0012.
Rosenbaum, Paul R, and Donald B Rubin. 1983. “The Central Role of
the Propensity Score in Observational Studies for Causal
Effects.” Biometrika 70 (1): 41–55.
Samuels, Lauren Ruth. 2017. Aspects of Causal Inference Within the
Evenly Matchable Population: The Average Treatment Effect on the Evenly
Matchable Units, Visually Guided Cohort Selection, and Bagged One-to-One
Matching. Vanderbilt University.
Schlesselman, J. J. 1982. Case-Control Studies: Design, Conduct,
Analysis. Monographs in Epidemiology and Biostatistics. Oxford
University Press. https://books.google.com/books?id=5OkyFkYOn0QC.
Schuster, Tibor, Wilfrid Kouokam Lowe, and Robert W. Platt. 2016.
“Propensity Score Model Overfitting Led to Inflated Variance of
Estimated Odds Ratios.” Journal of Clinical Epidemiology
80 (December): 97–106. https://doi.org/10.1016/j.jclinepi.2016.05.017.
Shmueli, Galit. 2010. “To Explain or to Predict?”
Statistical Science 25 (3). https://doi.org/10.1214/10-sts330.
“Split Decision.” 2022. Book by Ice-T, Spike, Douglas
Century | Official Publisher Page | Simon & Schuster. https://www.simonandschuster.com/books/Split-Decision/Ice-T/9781982148775.
Steck, Harald, Linas Baltrunas, Ehtsham Elahi, Dawen Liang, Yves
Raimond, and Justin Basilico. 2021. “Deep Learning for Recommender
Systems: A Netflix Case Study.” AI Magazine 42 (3):
7–18. https://doi.org/10.1609/aimag.v42i3.18140.
Sugiyama, Kozo, Shojiro Tagawa, and Mitsuhiko Toda. 1981. “Methods
for Visual Understanding of Hierarchical System Structures.”
IEEE Transactions on Systems, Man, and Cybernetics 11 (2):
109–25. https://doi.org/10.1109/tsmc.1981.4308636.
Tennant, Peter W G, Eleanor J Murray, Kellyn F Arnold, Laurie Berrie,
Matthew P Fox, Sarah C Gadd, Wendy J Harrison, et al. 2020. “Use
of Directed Acyclic Graphs (DAGs) to Identify Confounders in Applied
Health Research: Review and Recommendations.” International
Journal of Epidemiology 50 (2): 620–32. https://doi.org/10.1093/ije/dyaa213.
Textor, Johannes, Benito van der Zander, Mark S. Gilthorpe, Maciej
Liśkiewicz, and George T. H. Ellison. 2017. “Robust Causal
Inference Using Directed Acyclic Graphs: The R Package
‘Dagitty’.” International Journal
of Epidemiology, January, dyw341. https://doi.org/10.1093/ije/dyw341.
Weinberg, Clarice R. 2007. “Can DAGs Clarify Effect
Modification?” Epidemiology 18 (5): 569–72. https://doi.org/10.1097/ede.0b013e318126c11d.
Westreich, D., and S. Greenland. 2013. “The Table 2 Fallacy:
Presenting and Interpreting Confounder and Modifier
Coefficients.” American Journal of Epidemiology 177 (4):
292–98. https://doi.org/10.1093/aje/kws412.
Whitcomb, Brian W, and Ashley I Naimi. 2020. “Defining,
Quantifying, and Interpreting
“Noncollapsibility” in Epidemiologic Studies
of Measures of “Effect”.” American
Journal of Epidemiology 190 (5): 697–700. https://doi.org/10.1093/aje/kwaa267.
Williamson, Elizabeth J, Andrew Forbes, and Ian R White. 2014.
“Variance Reduction in Randomised Trials by Inverse Probability
Weighting Using the Propensity Score.” Statistics in
Medicine 33 (5): 721–37.
“World Malaria Report 2021.” 2021. https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021.
Wynants, Laure, Ben Van Calster, Gary S Collins, Richard D Riley, Georg
Heinze, Ewoud Schuit, Elena Albu, et al. 2020. “Prediction Models
for Diagnosis and Prognosis of Covid-19: Systematic Review and Critical
Appraisal.” BMJ, April, m1328. https://doi.org/10.1136/bmj.m1328.
Yland, Jennifer J, Amelia K Wesselink, Timothy L Lash, and Matthew P
Fox. 2022. “Misconceptions About the Direction of Bias From
Nondifferential Misclassification.” American Journal of
Epidemiology 191 (8): 1485–95. https://doi.org/10.1093/aje/kwac035.
Zander, Benito van der, Maciej Liśkiewicz, and Johannes Textor. 2019.
“Separators and Adjustment Sets in Causal Graphs: Complete
Criteria and an Algorithmic Framework.” Artificial
Intelligence 270 (May): 1–40. https://doi.org/10.1016/j.artint.2018.12.006.
Zivich, Paul N, Stephen R Cole, and Daniel Westreich. 2022.
“Positivity: Identifiability and Estimability.” https://arxiv.org/abs/2207.05010.